

CORPORATE PRESENTATION

MESSAGE FROM

Krishna Chivukula Jr.

CEO, INDO-MIM

We are a leading global supplier of precision-engineered products using Metal Injection Molding as the core manufacturing technology. INDO-MIM has achieved a leadership position in the field of MIM, providing precision-engineered products to customers in more than forty countries in the Americas, Europe, and Asia. "INDO-MIM is committed to achieve total customer satisfaction"

ABOUT US World's Largest MIM Company **Ship To** 85+ **Five Continents Material** 650+ 150M +**Options Parts Shipped** 32 Annually **Customers MPIF Awards** Globally 3000+ 6000+

MIM Parts

Variety

Employees

MANUFACTURING FOOTPRINT

Over 1.18M sq. ft. of manufacturing in multiple locations in 2 countries

- 0.76M sq. ft. area
- MIM, Machining, Powder Plant & Special Processes
- 700 million parts capacity
- 3000 employees

BENGALURU

- 0.08M sq. ft. area
- Aerospace Precision Machining & Sub-Assemblies
- 5-Axis Multi-tasking Machines
- NADCAP-approved Special Processes

TIRUPATI

- 0.16M sq. ft. area
- Precision Investment Casting, Machining
- 400 employees

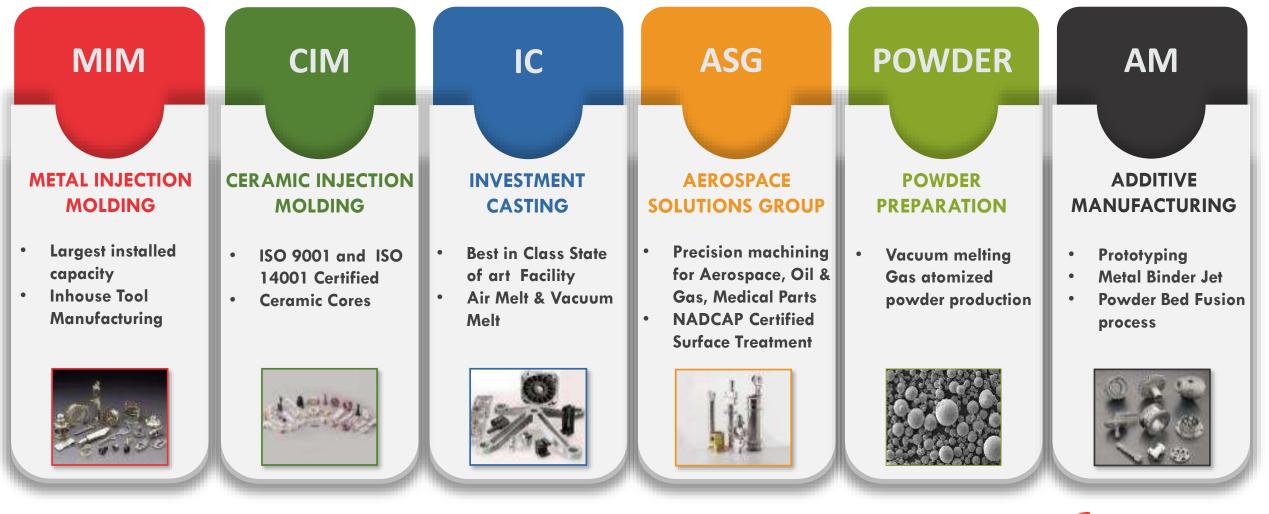
TX, USA

- 0.14M sq. ft. area
 - 90 million parts capacity
- Expandable up to 365k sq. ft.
- 150 employees

AZ, USA

- 0.04M sq. ft. area
- Triax Castings Vacuum Investment Casting foundry specializing in Directionally Solidified (DS), Single Crystal (SC) and Equiax(EQ) casting capabilities

GLOBAL SALES & MARKETING = GLOBAL REACH


20 Years of serving global markets

45+ Countries

Providing precision-engineered products to customers in more than forty five countries in the Americas, Asia, Australia and Europe

DIVERSE TECHNOLOGIES

HISTORIC TIMELINE

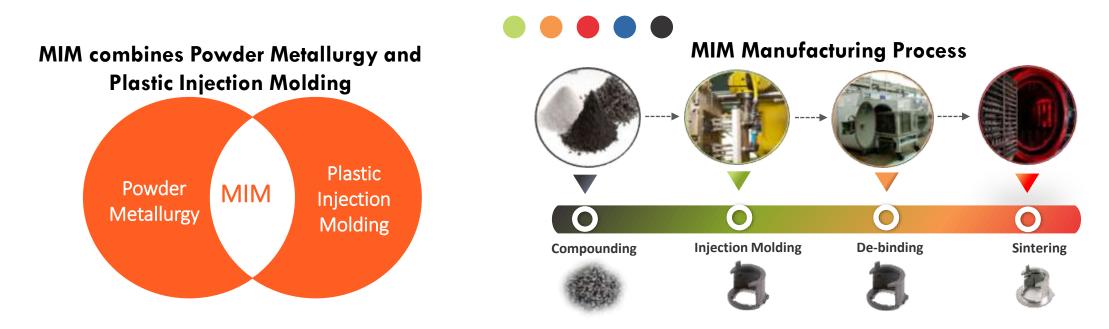
GLOBAL PRESENCE

GLOBAL SALES & MARKETING = GLOBAL REACH

20 Years of serving global markets

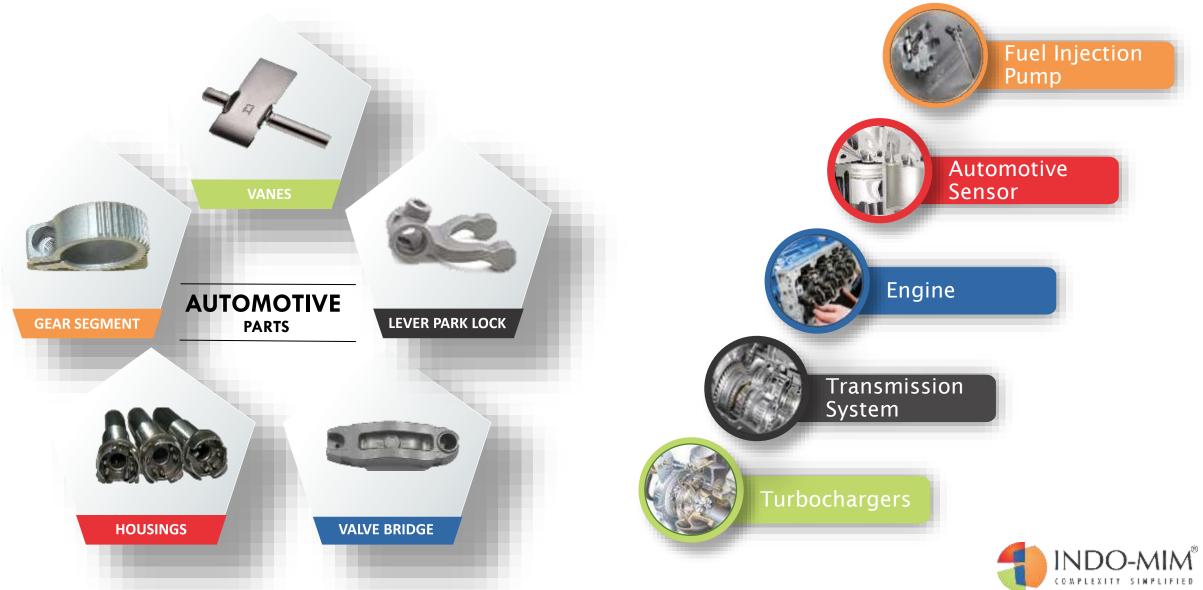
45+ Countries

Providing precision-engineered products to customers in more than forty five countries in the Americas, Asia, Australia and Europe



CERTIFICATIONS

MIM PROVIDES THE OPTIMAL BALANCE BETWEEN COMPLEXITY & PRODUCTIVITY



Alternate technologies do not provide commercially viable solutions

Parameter	МІМ	Other Processes							
Ability to handle complex parts	Best suited for highly complex parts with multiple dimensions	Low – Most other processes have limited capability of handling complexity of parts							
Ability to mass produce	Ability to mass produce easily as the die/mould once formed can be reused	Restricted ability to replicate processes at scale							
Commercial viability	Ability to manufacture complex products in a cost effective manner	Costly to manufacture complex products with bulk production volume							

ROADMAP - AUTOMOTIVE

CASE STUDY – FUEL PUMP ACTUATION

APPLICATION – FUEL ACTUATION

- Entire profile manufactured through MIM
- Large batch production with auto rewinding mechanism for thread in tool

PRODUCT DESCRIPTION

- Material :- MIM 4605 (Medium Carbon Steel)
- Weight :- 9gm
- Segment :- Automotive
- Annual Requirement :- 3600K
- 6 separate machining operations for every part
- Problem faced in repeatability and burr formation
- High machining cost

SOLUTION

CUSTOMER PAIN POINTS

INDO-MIM Confidential

ROADMAP - CONSUMER

CASE STUDY – BELAY DEVICE

PRODUCT DESCRIPTION APPLICATION – ROCK CLIMBING Material :- MIM 17-4PH ۲ Weight :- 15gm • Segment :- Consumer Annual Required :- 30K 14 AF 18 AF 18 18 19 Near-net shape achieved in the **Complex profile with features like** • **MPIF AWARD** tool itself with all the complex curved profile, undercut and **WINNER – 2018** profile features, eliminating all inclined geometry is difficult for the secondary machining conventional machining operations **CUSTOMER PAIN POINTS SOLUTION**

INDO-MIM Confidential

CASE STUDY – SOUND TUBE

CERAMIC INJECTION MOLDING (CIM)

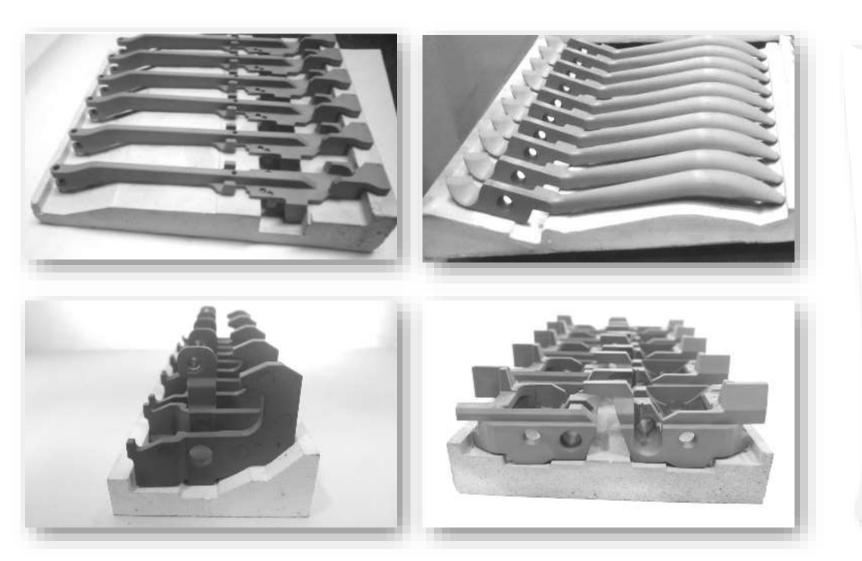
CASE STUDY – CERAMIC YARN SEPERATOR

APPLICATION – YARN MAKING MACHINE

- Replacing the aluminum to ceramic
- Withstand high temperatures
- Wear and Corrosion resistance
- Complicated profile achievable in mold tool

SOLUTION

PRODUCT DESCRIPTION


- Material :- 96% of Alumina (Ceramic)
- Weight :- 8gm
- Segment :- Consumer
- Annual Requirement :- 500K
- Wearing of aluminum notch due to high speed yarn spinning method
- Complicated profile at the functional area

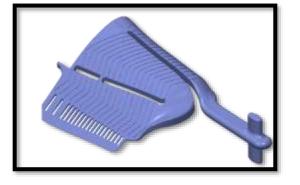
CUSTOMER PAIN POINTS

INDO-MIM Confidential

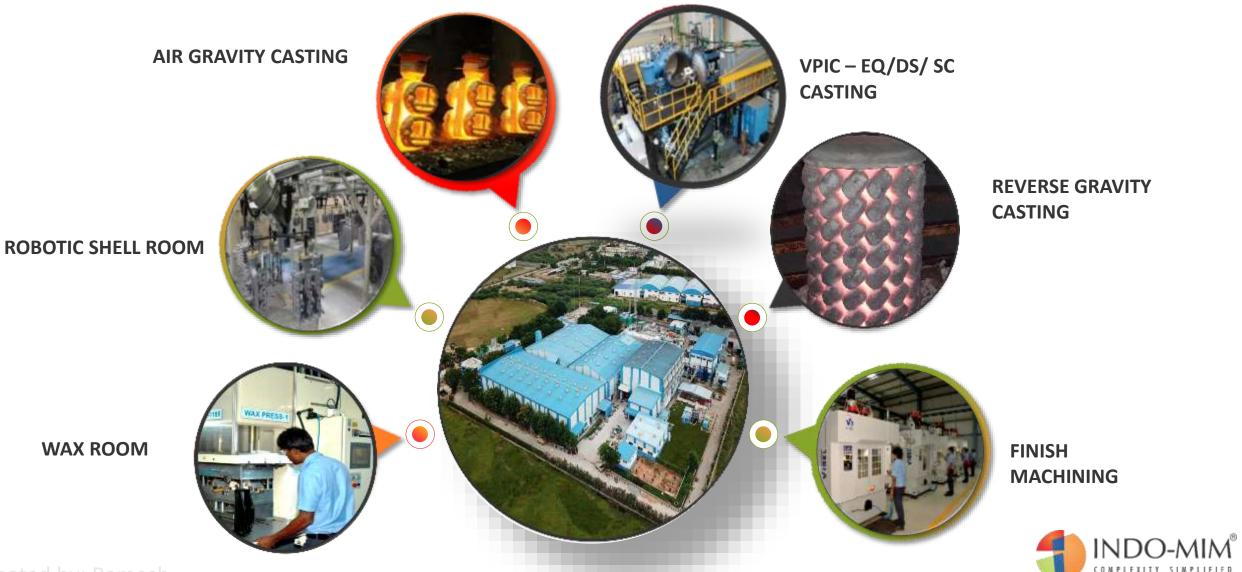
CERAMIC STAGERS

IN-HOUSE CERAMIC SETTERS

Customized staging setters are designed and manufactured for better dimensional control and capability leading to lower post-MIM secondary operations


CERAMIC CORES FOR INVESTMENT CASTING

Ceramic cores are sacrificial ceramic structures primarily used for forming cavities that are too small or complex to be machined within investing casting procedures



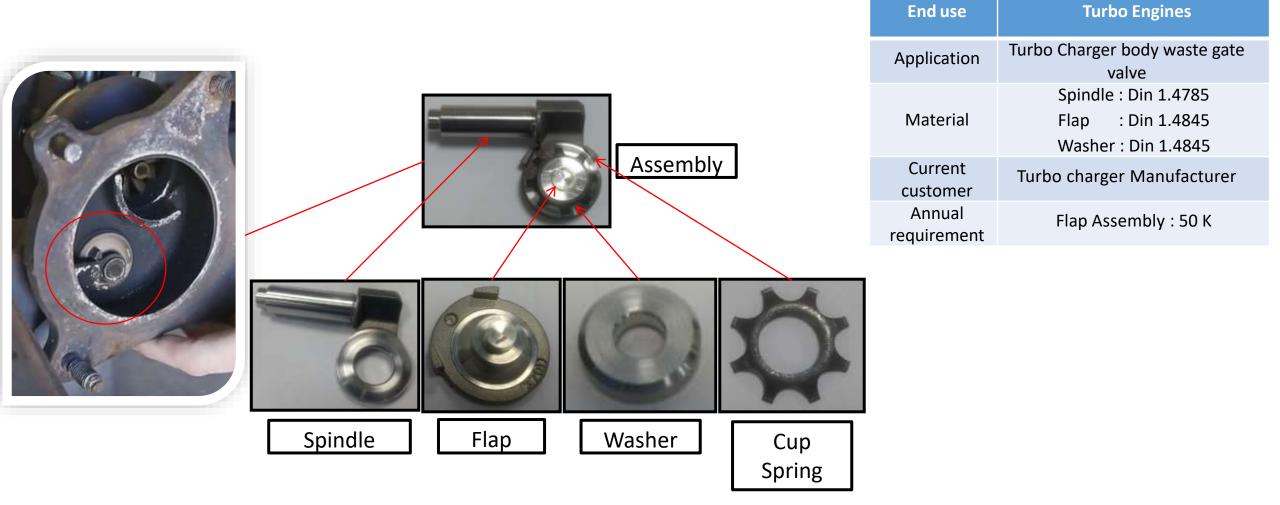
Ceramic cores are predominantly found in Aerospace and Industrial Markets

PRECISION INVESTMENT CASTING

Created by: Ramesh

CASE STUDIES – SHIFT FINGER

Challenges resolved by INDO-MIM :


- Achieved precise tolerance for position 0.1-0.4 & also 0.07 with Cpk>1.67
- Achieved cam profile by maintaining good surface finish by minimal machining
- Many of our competitors are doing engravings through machining route. Whereas INDO-MIM can achieve from the process itself thereby providing cost benefits

End use	Engines					
Application	Used in transmission of Gears in gear box unit					
Material	SCR420					
Current customer	Automotive Manufacturer					
Annual requirement	120K					

CASE STUDIES – FLAP ASSEMBLY

INVESTMENT CASTING

EQ

EQ VACUUM MELTING

Capability - 25Kg and 50Kg melt per charge

Max Temp: 1700°C

Melt Chamber Working Vacuum : < 1X10⁻³ mBar

Best in class process controls

INVESTMENT CAST PARTS PORTFOLIO

- Weight 10 gms to 500 gms
- Size 10 mm to 500 mm length
- Wall Thickness 2 to 20 mm

- Weight 1 Kg to 20 Kgs
- Size 300 mm dia & 500 mm length
- Wall Thickness 2 to 100 mm

AEROSPACE SOLUTION GROUP

PRECISION MACHINING EQUIPMENT

CATEGORY	MACHINE	ТҮРЕ	CONTROL SYSTEM	AXIS DETAILS			
	Dahlih	VMC	Fanuc	4 axis			
	Dahlih	VMC	Fanuc	3 axis			
	DMC	VMC	Siemens	4 axis			
VERTICAL MILLING	DMC	VMC	Heidenhain TNC 620	3 axis			
VENTICAL WILLING	Okuma	VMC	OSP-P300	4 axis			
	Doosan	VMC	Fanuc	4 axis			
	DMU	VMC	Siemens	5 axis			
	Makino	VMC	Fanuc	4 axis			
TURN MILL	DMG	Turn mill	Siemens	4 axis			
I GIKIN IVITEE) Hyundai	Turn mill	Fanuc	4 axis			
	Citizen Cincom	Turn mill	Fanuc	6 axis			
SWISS MACHINES	Schaublin	Turn mill	Fanuc	7 axis			
	Schaublin	Turn mill	Fanuc	3 axis			
	Mylas	Turn mill	Mitsubishi	3 axis			
	Nexturn		Fanuc	9 axis			
	Takisawa	Turning	Fanuc	2 axis			
TURNING	HAAS	Turning	HAAS	2 axis			
TORINING	LMW	Turning	Fanuc	2 axis			
	Mylas	Turning	Mitsubishi	2 axis			
HORIZONTAL MILLING	DMC	НМС	Siemens	4 axis			
	HAAS	НМС	HAAS	4 axis			
MILL TURN	Okuma	Mill turn	OSP-P300	5 axis			
	Okomoto	Surface Grinding	Fanuc	N/A			
OTHER	BGS	Centerless Grinding	N/A	N/A			
	Jones & Shipman	Cylindrical Grinding	N/A	N/A			

PARTS PORTFOLIO

- Many product lines recognized by our customers as Centers of Excellence (COE)
- Commercial: On both NARROW BODY and WIDE BODY programs including Airbus A220, A320neo, A330, A350, Boeing 737 MAX, 777X, 787 Dreamliner
- Defense: AH-64 Apache, CH-47 Chinook

Material: Inconel 625/718, Titanium, SS 347, AI 6061 Key Characteristics: ID 0.0005'' Special Process: Anodize, Painting

Material: Inconel 718, Waspaloy, Toughmet, 17-4 PH, Castings Key Characteristics: ID 0.0002" Special Process: NDT, Passivation, Zinc Nickel plating

Material: 13-8 PH, A286, 17-4 PH, AI 6061 / 7075

Key Characteristics: Position 0.0001" Special Process: NDT, CCC, Cadmium plating, Passivation, Painting

PARTS PORTFOLIO - CONTINUED

Material: Al 7075

Key Characteristics: Position 0.001" & Hole (Ø 0.8") tolerance: 0.0003" Special Process: NDT, Chemical Conversion Material: Al 6061 Key Characteristics: Total Run out 0.001" & Hole (Ø 0.18") tolerance: 0.0003"

Special Process: NDT, Chemical Conversion

Material: AMS 5645 Key Characteristics: complex machining, assembly of stud Special Process: NDT, Cleaning

Material: Casting Steel Key Characteristics: Casting machining Special Process: NDT

NADCAP-APPROVED SPECIAL PROCESSES

SL. NO.	PROCESS	AS 9100	NADCAP	AIRBUS (80-T)	Boeing	Bell Helicopter	Elbit Systems	Halliburton	Ы	MBD (Safran)	Moog	Parker	PWA	PWC	Rafael	Rolls Royce	Thales	Collins Aerospace	CESA	Woodward
1	Alodine (CCC)	✓	✓		✓	✓	✓		✓	✓	✓) 🗸 [✓	 ✓ [✓	✓
2	Passivation	 ✓ 	 ✓ 	 ✓ 	 ✓ [✓	✓						✓	 ✓ 	✓ [✓
3	NDT - FPI		 ✓ 		✓			✓	✓	 ✓ 	✓	✓				✓			✓	✓
4	NDT - MPI	 ✓ 	 ✓ 	 ✓ 	 ✓ 			 ✓ 		✓	✓	 ✓ 				✓			✓ [✓
5	Cadmium	 ✓ 	 ✓ 	 ✓ 	✓ [✓	√	✓	 ✓ 						✓	✓	√
6	Hard Chrome	 ✓ 	 ✓ 					 ✓ 	✓	✓	✓	 ✓ 	✓					✓	✓ [√
7	Chromic Acid Anodizing	\checkmark	✓		✓	 ✓ 	 ✓ 		✓	✓	✓		✓		✓ [✓	✓	✓	✓
8	Sulphuric Acid Anodizing	✓	 ✓ 			✓	 ✓ 		✓		✓		✓	 Image: A start of the start of			✓	 ✓ 		 ✓
9	Hard Anodizing	 ✓ 	 ✓ 				 ✓ 		✓		 ✓ 						 ✓ 	✓		 ✓
10	Boric - Sulphuric Acid Anodizing	 ✓ 	✓		✓															
11	Zinc Nickel	✓	 ✓ 						✓		✓		√							
12	Electroless Nickel	✓	 ✓ 																	✓
13	Paint	 ✓ 	 ✓ [✓ 	✓ (✓ 		✓ (✓ [✓ 		●			✓		✓
14	Heat Treatment							 ✓ 												
15	DFL / SFL	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark					\checkmark		

IIM

COMPLEXITY ST

Created by: Ramesh

SPECIAL PROCESSES CAPABILITIES

Landing Gear pistons and cylinders for Airbus A350, A330/340, A320neo, A380 & Boeing 787 programs

Created by: Ramesh

WELDING FACILITY

SECTORS

Defense, Aerospace, Medical, Automobile & General Engineering

PRODUCTS

Sheet metal, Machined components, Castings, Tubes and Pipe welding

FACILITY

- 2200 Sq.ft Temperature-controlled Welding shop
- Fronius MagicWave 4000 machine GTAW (TIG)
- Two axis welding positioner
- Pre & post weld facility

WELDING MACHINE

ROBOTIC WELDING-NOV'22

MATERIAL CAPABILITY

- Aluminum and its alloys
- Titanium and its alloys
- Nickel and its alloys
- Stainless steel
- Carbon and Mild steel

THICKNESS CAPABILITY

• Aluminum & its alloys – 1

mm to 25 mm

- All other materials 0.7
 - mm to 25 mm

FACILITY FOR METAL POWDERS

B

D

600 tons of melt capacity per annum

Vacuum melting – Hot Inert / Nitrogen gas atomization

ASB features enhance the **Powder Sphericity**

100 tons of capacity / year for AM grade powders. Planned to enhance capacity to **300 tons/annum** in 2022

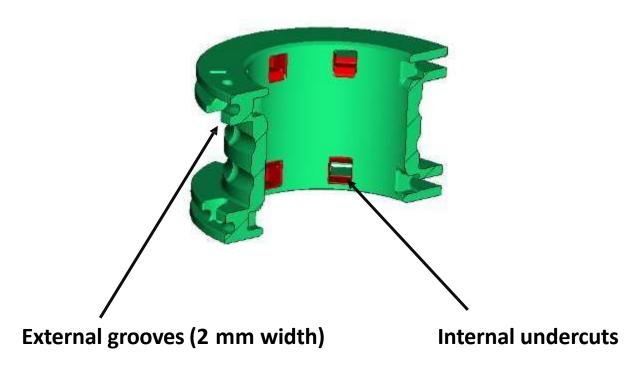
Capable to handle **Ferrous** alloys, Nickel and Cobalt super alloy powders

POWDERS IN OUR BASKET

METAL BINDER-JET 3D PRINTING

- ✓ Green and sintered density is determined by the particle size distribution of the powders
- The Powder Processing Unit is used primarily to facilitate recyclability of the powders and ensuring the uniformity of the particle size distribution

METAL BINDER JETTING PARTS



CASE STUDIES: BINDER JET AND MACHINED...

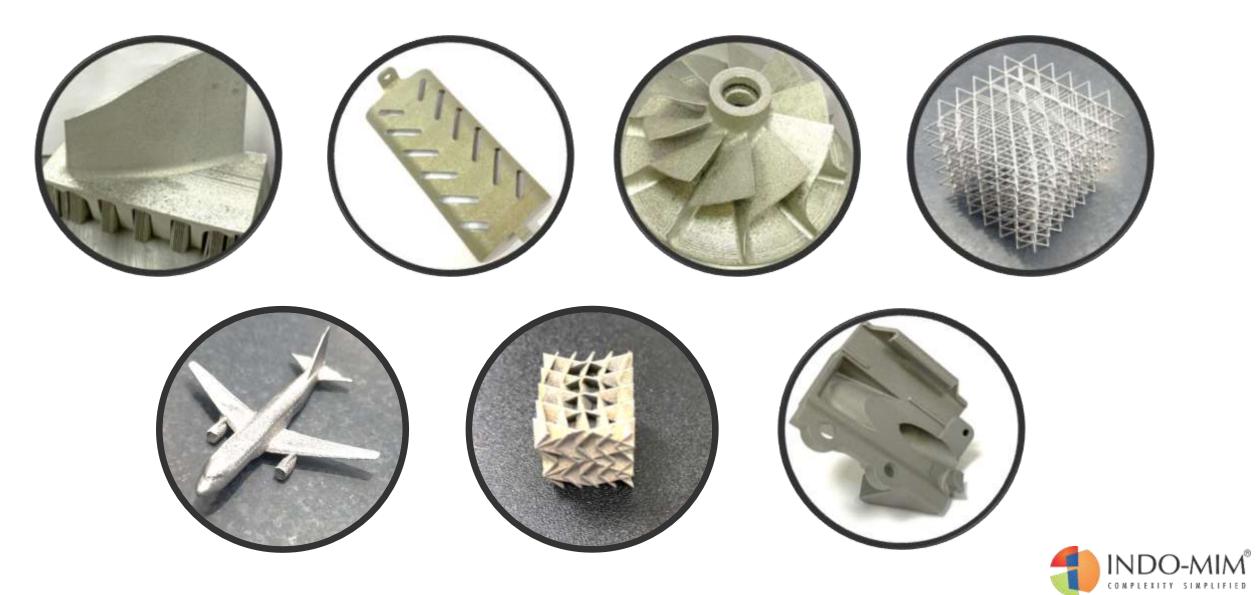
Minimum wall thickne	ss : 1.90 mm Volume
of the part	: 19249.02 mm ³
Weight of the part	: 132 gms

Part complexity :

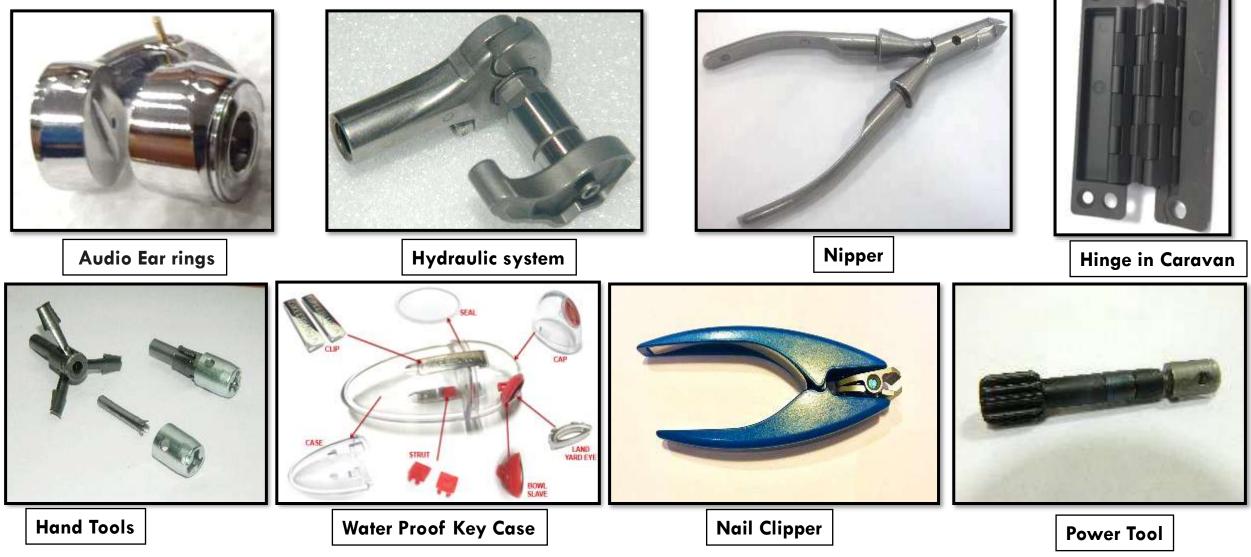
- Part has external grooves on both top and bottom face (2mm width on each)
- Also has **internal under cuts** makes it difficult to produce through MIM process

or any other process

• These kind of parts are ideal candidates for Binder jet process



LASER POWDER BED FUSION 3D PRINTING


- ✓ Recently added Powder Bed Fusion 3D printing capability
 - Build volume of 150 mm dia * 180 mm height
 - Materials supported include Inconel (625, 718), Stainless Steel (316L, 410L, 17-4PH), 18Ni300, HK30, Cobalt Chrome Alloys (Co-Cr-Mo, Co-Cr-W-Mo)
- Vertically integrated with our own metal powder manufacturing capability

PORTFOLIO OF 3D PRINTED PARTS (LPBF)

SUB-ASSEMBLY PROJECTS – AUTO & CONSUMER

UNIQUE DIFFERENTIATORS

SUSTAINABILITY INITIATIVES

- ✓ We at INDO-MIM always strive towards protecting environment including pollution prevention and emission reduction
- ✓ 97 % of our energy consumption is achieved through green energy

- Optimization of DG set utilization through PLC Automation & Solar Power to achieve CO2 Reduction
- ✓ 5000 saplings planted to make a mini-forest to help offset carbon footprint

CORPORATE SOCIAL RESPONSIBILITY

INDO-MIM group companies proudly support a variety of charitable organizations that share our vision of making a positive contribution to the society

Mid Day Meal Scheme

Through the local schools, INDO-MIM feeds over 2,500 students in the mid day meal scheme.

The Chivukula Wing

The Chivukula wing was built at the Bangalore Baptist Hospital Through Support from Mr. Chivukula. Annual contributions to support treatment needs for the disadvantaged have been provided.

Asha Foundation

INDO-MIM continues to support the Asha foundation in the fight against HIV/AIDS in India.

Deenabandhu & Vishranthi Trust

INDO-MIM extends its support towards rural education through the Deenabandu Trust. It also supports the welfare of the old and the orphans through the Vishranthi Trust.

MORE THAN 3000 ONE BEA LARIS

Creating Value :

In-depth technical competence

International presence

Application and Industry Expertise

Long-term Relationships

THANKYO

Bottenfel HM 90/210

www.indo-mim.com

/indomim

4M 100/350

in /company/indo-mim-pvt-ltd

infoeu@indo-mim.com

Battenield

infohq@indo-mim.com

infocn@indo-mim.com